广告投放

SARS-CoV-2 新菌株(导致 COVID-19 的病毒):“中和抗体”方法能否应对快速突变?

Several new strains of the 病毒 have emerged since the pandemic began. New variants were reported as early as February 2020. The current variant that has brought the UK to standstill this Christmas is said to be 70% more infectious. In view of emerging strains, will several vaccines being developed worldwide still be effective enough against the new variants as well? ‘Neutralising Antibody’ approach targeting the virus seems to offer a hopeful option in this current climate of uncertainty. The status is that eight neutralizing antibodies against SARS-CoV-2 are currently undergoing clinical trials, including trials of ‘antibody cocktails’ aimed at overcoming possibility of the virus developing resistance to a single neutralizing antibody by accumulating spontaneous mutations.

SARS-COV-2 病毒 负责 Covid-19 大流行属于冠状病毒科病毒中的β冠状病毒属。 这种病毒具有正链 RNA 基因组,这意味着单链 RNA 充当信使 RNA,同时在宿主中直接翻译成病毒蛋白。 SARS-CoV-2 的基因组编码四种结构蛋白 {spike (S)、包膜 (E)、膜 (M) 和核衣壳 (N)} 和 16 种非结构蛋白。 而结构蛋白在宿主细胞上的受体识别、膜融合和随后的病毒进入中发挥作用; 非结构蛋白 (NSP) 在复制功能中起着至关重要的作用,例如通过依赖于 RNA 的 RNA 聚合酶 (RdRp, NSP12) 进行 RNA 聚合。 

Significantly, RNA 病毒 polymerases do not have proofreading nuclease activity, meaning there is no mechanism available to check for the errors during transcription or replication. Therefore, viruses of this family display extremely high rates of variation or mutation. This drives their genome variability and evolution thereby providing them extreme level of adaptability and helping the virus escape the immunity of the host and developing resistance against the vaccines (1,2,3). 显然,由于上述原因,RNA病毒(包括冠状病毒)的基因组一直以极高的速度发生突变一直是其本质。 这些帮助病毒克服负选择压力的复制错误,导致病毒的适应。 从长远来看,错误率越高,适应性越强。 然而, Covid-19 是历史上第一次记录在案的冠状病毒大流行。 这是自 1918 年西班牙流感以来第五次有记录的大流行病; 之前记录的四次大流行都是由流感病毒引起的 (4).  

Apparently, human coronaviruses have been building up mutations and adapting in the last 50 years. There have been several epidemics since 1966, when the first epidemic episode was recorded. The first lethal human 冠状病毒 epidemic was in 2002 in Guangdong Province, China that was caused by the 变种 SARS-CoV 随后在 2012 年由变异的 MERS-CoV 在沙特阿拉伯流行。 由 SARS-CoV-2 变异引起的当前事件始于 2019 年 XNUMX 月在中国武汉,随后在全球蔓延,成为导致首个冠状病毒大流行 Covid-19 疾病。 现在,有几个子变体分布在不同的大陆。 SARS-CoV-2 还显示出人与动物之间的跨物种传播以及传回人类(5).

The vaccine development against human 冠状病毒 did start after 2002 epidemic. Several vaccines against SARS-CoV and MERS-CoV were developed and underwent preclinical trials but few entered human trials. None of them received FDA approval though (6). 通过使用现有的临床前数据,包括在开发 SARS-CoV 和 MERS-CoV 候选疫苗期间进行的疫苗设计相关数据,这些努力在针对 SARS-CoV-2 的疫苗开发中派上用场 (7). 目前,有几种针对 SARS-CoV-2 的疫苗处于非常先进的阶段; 少数已经被批准为 EUA(紧急使用授权)。 英国约有 XNUMX 万高危人群已经接受了辉瑞 (Pfizer) 的治疗 mRNA疫苗. And, here comes the report of newly emerged, highly infectious strain (or, sub-strain) of SARS-CoV-2 in the UK this Christmas time. Temporarily named VUI-202012/01 or B117, this variant has 17 mutations including one in spike protein. More infectious doesn’t necessarily mean that the 病毒 has become more dangerous for humans. Naturally, one wonders if these vaccines will still be effective enough against the new variants as well. It is argued that a single mutation in the spike should not make vaccines (‘spike region’ targeting) vaccine ineffective but as the mutations accumulate over time, vaccines may need fine tuning to accommodate antigenic drift (8,9)

抗体方法:重新强调中和抗体可能势在必行 

正是在这种背景下,“抗体方法”(涉及“针对 SARS-COV-2 病毒‘ and ‘therapeutic antibodies against Covid-19-相关的过度炎症')获得显着意义。 针对 SARS-CoV-2 病毒及其变体的中和抗体可作为“随时可用”的被动免疫工具。  

中和抗体 目标 病毒 directly in the host and can provide quick protection especially against any newly emerged variants. This route has not shown much progress yet but has the potential to address the problem of antigenic drift and possible vaccine mismatch presented by the fast-mutating and evolving SARS-CoV-2 病毒. As on 28 July 2020, eight neutralizing antibodies against SARS-CoV-2 病毒 (namely LY-CoV555, JS016, REGN-COV2, TY027, BRII-196, BRII-198, CT-P59, and SCTA01) were undergoing clinical evaluation. Of these neutralising antibodies, LY-CoV555 is 单克隆抗体 (mAb). VIR-7831、LY-CoV016、BGB-DXP593、REGN-COV2 和 CT-P59 是其他正在尝试用作中和抗体的单克隆抗体。 抗体鸡尾酒可以克服对单一中和抗体产生的任何可能的抗性,因此诸如 REGN-COV2、AZD7442 和 COVI-SHIELD 等鸡尾酒也在进行临床试验。 然而,菌株也可能逐渐对鸡尾酒产生抗药性。 此外,可能存在抗体依赖性增强 (ADE) 的风险,因为 抗体 that only bind to the 病毒 and are incapable of neutralising them, thereby worsening disease progression (10,11). 需要连续的创新研究工作来解决这些问题。 

*** 

相关文章: COVID-19:“中和抗体”试验在英国开始

***

参考文献: 

  1. Elena S and Sanjuán R., 2005. Adaptive Value of High Mutation Rates of RNA 病毒: Separating Causes from Consequences. ASM Journal of Virology. DOI: https://doi.org/10.1128/JVI.79.18.11555-11558.2005   
  1. Bębenek A. 和 Ziuzia-Graczyk I.,2018 年。DNA 复制的保真度——校对问题。 当前遗传学。 2018 年; 64(5):985-996。 DOI: https://doi.org/10.1007/s00294-018-0820-1  
  1. Pachetti M.、Marini B. 等人,2020 年。新兴的 SARS-CoV-2 突变热点包括一种新型的 RNA 依赖性 RNA 聚合酶变体。 Journal of Translational Medicine 第 18 卷,文章编号:179 (2020)。 发布时间:22 年 2020 月 XNUMX 日。DOI: https://doi.org/10.1186/s12967-020-02344-6 
  1. Liu Y.、Kuo R. 和 Shih H.,2020。COVID-19:历史上第一次记录在案的冠状病毒大流行。 生物医学杂志。 第 43 卷,第 4 期,2020 年 328 月,第 333-XNUMX 页。 DOI: https://doi.org/10.1016/j.bj.2020.04.007  
  1. Munnink B., Sikkema R., et al., 2020. SARS-CoV-2 在水貂养殖场在人类与水貂之间以及再回到人类之间的传播。 科学 10 年 2020 月 5901 日:eabeXNUMX。 DOI: https://doi.org/10.1126/science.abe5901  
  1. Li Y., Chi W., et al., 2020. 冠状病毒疫苗开发:从 SARS 和 MERS 到 COVID-19。 Journal of Biomedical Science 第 27 卷,文章编号:104 (2020)。 发布时间:20 年 2020 月 XNUMX 日。DOI: https://doi.org/10.1186/s12929-020-00695-2  
  1. Krammer F., 2020. 正在开发的 SARS-CoV-2 疫苗。 《自然》第 586 卷,第 516-527 页(2020 年)。 发布时间:23 年 2020 月 XNUMX 日。DOI: https://doi.org/10.1038/s41586-020-2798-3  
  1. Koyama T.、Weeraratne D. 等人,2020 年。可能影响 COVID-19 疫苗开发和抗体治疗的漂移变体的出现。 病原体 2020, 9(5), 324; DOI: https://doi.org/10.3390/pathogens9050324  
  1. BMJ 2020。新闻发布会。 Covid-19:在英国发现了新的冠状病毒变种。 16 年 2020 月 XNUMX 日发布。DOI: https://doi.org/10.1136/bmj.m4857  
  1. Renn A., Fu Y., et al., 2020. 卓有成效的中和抗体管道带来了击败 SARS-Cov-2 的希望。 药理学趋势。 第 41 卷,第 11 期,2020 年 815 月,第 829-XNUMX 页。 DOI: https://doi.org/10.1016/j.tips.2020.07.004  
  1. Tuccori M.、Ferraro S. 等人,2020 年。抗 SARS-CoV-2 中和单克隆抗体:临床管道。 mAbs 第 12 卷,2020 – 第 1 期。在线发布:15 年 2020 月 XNUMX 日。DOI: https://doi.org/10.1080/19420862.2020.1854149 

*** 

乌梅什·普拉萨德(Umesh Prasad)
乌梅什·普拉萨德(Umesh Prasad)
科学记者| 《科学欧洲》杂志创始人编辑

订阅电邮通讯

将通过所有最新新闻,优惠和特别公告进行更新。

最热门文章

神经系统的完整连接图:更新

成功映射男性完整的神经网络...

绿茶与咖啡:前者似乎更健康

根据对日本老年人进行的一项研究,...

Craspase:一种新的更安全的“CRISPR – Cas系统”,可以编辑基因和......

细菌和病毒中的“CRISPR-Cas系统”识别并摧毁入侵...
- 广告 -
94,488风扇喜欢
47,677产品粉丝关注
1,772产品粉丝关注
30认购订阅